
tapes Documentation
Release 0.3

Emils Solmanis

April 06, 2015

Contents

1 Quick start 3
1.1 Dependencies . 3
1.2 Single process . 3
1.3 Utilities . 4
1.4 Reporting . 4
1.5 Multi process . 5

2 API docs 7

3 Benchmarks 11
3.1 Just the timer . 11
3.2 Flask . 12
3.3 Tornado, single process . 13
3.4 Tornado, forked processes . 15

4 Indices and tables 17

Python Module Index 19

i

ii

tapes Documentation, Release 0.3

Contents:

Contents 1

tapes Documentation, Release 0.3

2 Contents

CHAPTER 1

Quick start

1.1 Dependencies

The libraries dependencies are kept to a minimum to avoid the overhead for features you choose not to use, e.g.,

• tornado is not formally a dependency, but is obviously needed should you choose to use the tornado features

• pyzmq is not formally a dependency, but is needed should you choose to use the distributed reporting
features

1.2 Single process

If you just need to get off the ground and flying, there’s convenience methods in the tapes module, so you can do:

timer = tapes.timer('my.timer')

@app.route('/widgets')
def moo():

with timer.time():
return 'stuff'

This will simply use a global tapes.registry.Registry object instance under the hood.

You can also explicitly create and maintain a registry (or several, if needed) by just creating some:

registry0 = Registry()
registry1 = Registry()

timer0 = registry0.timer('some.name')
timer1 = registry1.timer('some.name')

Even though the timers were created with the same name, they’re maintained in different registries, they’re separate
instances.

Repeated calls on the same registry with the same name will return the existing instance:

timer0 = tapes.timer('some.timer')
timer1 = tapes.timer('some.timer')
timer0 and timer1 are actually the same instance

3

tapes Documentation, Release 0.3

1.3 Utilities

It’s common that you need to add the same metrics to many similar subclasses but have them all named differently
based on the class name. Because you would usually want to make the metric a class level attribute to avoid doing the
tedious lookup in particular methods, there is a utility metaclass that adds any necessary metrics to the class.

Example:

class MyCommonBaseHandler(tornado.web.RequestHandler):
__metaclass__ = metered_meta(metrics=[

('latency', 'my.http.endpoints.{}.latency', registry.timer),
('error_rate', 'my.http.endpoints.{}.error_rate', registry.meter),

], base=abc.ABCMeta)

The base argument wires in any existing metas, most commonly abc.ABCMeta. The metrics argument takes a
list of tuples, in which - the 1st arg is the name of the class attribute - the 2nd arg is a template for the metric name. It
will get rendered by calling template.format(class_name) - the 3rd arg is a callable taking a single argument
– the fully rendered name – and returning a metric instance

The above example would add two attributes to all subclasses of MyCommonBaseHandler called latency and
error_rate, which would be a timer and a meter, and correspond to metrics parametrized on the class name.

For more info check the full docs at tapes.meta.metered_meta().

1.4 Reporting

For pull style reporting you need to

• call tapes.registry.Registry.get_stats()

• expose the returned dict of values somehow

This should be trivial for most web applications, e.g., for Flask:

@app.route('/metrics')
def metrics():

return jsonify(tapes.get_stats())

or Tornado:

class MetricsHandler(web.RequestHandler):
@gen.coroutine
def get(self, *args, **kwargs):

self.finish(tapes.get_stats())

For push style reporting it gets more complicated because of the GIL. There are a couple of scheduled reporters that
report with configurable intervals, but they create a Thread. For most Python implementations this essentially means
that your application would block for the time it is doing the reporting, and while it is probably fine for most scenarios,
it’s still something to keep in mind.

There is a scheduled reporter base class for Tornado as well, which is non-blocking and uses the IOLoop to schedule
reporting.

Currently the push reporting is implemented for streams and StatsD.

The reporters are all used almost the same, i.e., by creating one and calling start() on it:

4 Chapter 1. Quick start

tapes Documentation, Release 0.3

reporter = SomeScheduledReporter(
interval=timedelta(seconds=10), registry=registry

)
reporter.start()

If you want a guaranteed low latency setup, you might want to look into the multi-process options below.

Otherwise, take a stroll through tapes.reporting

1.5 Multi process

Python web applications are generally run with several forks handling the same socket, either via uWSGI, gunicorn,
or, in the case of Tornado, just natively.

This causes problems with metrics, namely

• HTTP reporting breaks. The reported metrics are per-fork and you get random forks every time you make
a request

• Metrics aren’t strictly commutative, so even if you do push-reporting, you end up losing some info in the
combiner, e.g., StatsD

• Push-reporting generally means blocking your main application’s execution due to the GIL

Hence, with Tapes you have an option to

• run a light-weight proxy registry per fork

• have an aggregating master registry that does all the reporting in a separate fork

The proxy registries communicate with the master registry via 0MQ IPC pub-sub. Because 0MQ is really, really fast,
this ends up almost as fast as just computing the metrics locally anyway.

The obvious drawbacks are

• a separate forked process doing the aggregation and reporting

• a slight lag if the traffic volume is low due to batching in 0MQ

With that said, it’s much simpler to actually use than it sounds. The reporters are the same, so the only changes are the
use of an aggregator and proxy registries.

NOTE: due to the way gauge operates, it’s unavailable in the distributed mode. If / when I figure out how to combine
it, I’ll add it.

Tornado example:

registry = DistributedRegistry()

class TimedHandler(web.RequestHandler):
timer = registry.timer('my.timer')

@gen.coroutine
def get(self):

with TimedHandler.timer.time():
self.write('finished')

RegistryAggregator(HTTPReporter(8889)).start()

server = httpserver.HTTPServer(application)
server.bind(8888)

1.5. Multi process 5

tapes Documentation, Release 0.3

server.start(0)

registry.connect()

ioloop.IOLoop.current().start()

NOTE

• tapes.distributed.registry.RegistryAggregator.start() is called before the
fork() call

• tapes.distributed.registry.DistributedRegistry.connect() is called after the
fork() call

Check the API docs for more info – tapes.distributed.registry .

6 Chapter 1. Quick start

CHAPTER 2

API docs

class tapes.registry.Registry
Factory and storage location for all metrics stuff.

Use producer methods to create metrics. Metrics are hierarchical, the names are split on ‘.’.

counter(name)
Creates or gets an existing counter.

Parameters name – The name

Returns The created or existing counter for the given name

gauge(name, producer)
Creates or gets an existing gauge.

Parameters name – The name

Returns The created or existing gauge for the given name

get_stats()
Retrieves the current values of the metrics associated with this registry, formatted as a dict.

The metrics form a hierarchy, their names are split on ‘.’. The returned dict is an addict, so you can use it
as either a regular dict or via attributes, e.g.,

>>> import tapes
>>> registry = tapes.Registry()
>>> timer = registry.timer('my.timer')
>>> stats = registry.get_stats()
>>> print(stats['my']['timer']['count'])
0
>>> print(stats.my.timer.count)
0

Returns The values of the metrics associated with this registry

histogram(name)
Creates or gets an existing histogram.

Parameters name – The name

Returns The created or existing histogram for the given name

meter(name)
Creates or gets an existing meter.

Parameters name – The name

7

tapes Documentation, Release 0.3

Returns The created or existing meter for the given name

timer(name)
Creates or gets an existing timer.

Parameters name – The name

Returns The created or existing timer for the given name

tapes.meta.metered_meta(metrics, base=<type ‘type’>)
Creates a metaclass that will add the specified metrics at a path parametrized on the dynamic class name.

Prime use case is for base classes if all subclasses need separate metrics and / or the metrics need to be used in
base class methods, e.g., Tornado’s RequestHandler like:

import tapes
import tornado
import abc

registry = tapes.Registry()

class MyCommonBaseHandler(tornado.web.RequestHandler):
__metaclass__ = metered_meta([

('latency', 'my.http.endpoints.{}.latency', registry.timer)
], base=abc.ABCMeta)

@tornado.gen.coroutine
def get(self, *args, **kwargs):

with self.latency.time():
yield self.get_impl(*args, **kwargs)

@abc.abstractmethod
def get_impl(self, *args, **kwargs):

pass

class MyImplHandler(MyCommonBaseHandler):
@tornado.gen.coroutine
def get_impl(self, *args, **kwargs):

self.finish({'stuff': 'something'})

class MyOtherImplHandler(MyCommonBaseHandler):
@tornado.gen.coroutine
def get_impl(self, *args, **kwargs):

self.finish({'other stuff': 'more of something'})

This would produce two different relevant metrics,

• my.http.endpoints.MyImplHandler.latency

• my.http.endpoints.MyOtherImplHandler.latency

and, as an unfortunate side effect of adding it in the base class, a
my.http.endpoints.MyCommonBaseHandler.latency too.

Parameters

• metrics – list of (attr_name, metrics_path_template, metrics_factory)

• base – optional meta base if other than type

8 Chapter 2. API docs

tapes Documentation, Release 0.3

Returns a metaclass that populates the class with the needed metrics at paths based on the dynamic
class name

class tapes.reporting.ScheduledReporter(interval, registry=None)
Super class for scheduled reporters. Handles scheduling via a Thread.

report()
Override in subclasses.

A Python Thread is used for scheduling, so whatever this ends up doing, it should be pretty fast.

class tapes.reporting.http.HTTPReporter(port, registry=None)
Exposes metrics via HTTP.

For web applications, you should almost certainly just use your existing framework’s capabilities. This is for
applications that don’t have HTTP easily available.

class tapes.reporting.statsd.StatsdReporter(interval, host=’localhost’, port=8125, pre-
fix=None, registry=None)

Reporter for StatsD.

class tapes.reporting.stream.ThreadedStreamReporter(interval, stream=<open file ‘<std-
out>’, mode ‘w’>, registry=None)

Dumps JSON serialized metrics to a stream with an interval

class tapes.reporting.tornado.TornadoScheduledReporter(interval, registry=None,
io_loop=None)

Scheduled reporter that uses a tornado IOLoop for scheduling

class tapes.reporting.tornado.statsd.TornadoStatsdReporter(interval,
host=’localhost’,
port=8125, prefix=None,
registry=None)

Reports to StatsD using an IOLoop for scheduling

class tapes.reporting.tornado.stream.TornadoStreamReporter(interval, stream=<open
file ‘<stdout>’, mode
‘w’>, registry=None,
io_loop=None)

Writes JSON serialized metrics to a stream using an IOLoop for scheduling

class tapes.distributed.registry.DistributedRegistry(socket_addr=’ipc://tapes_metrics.ipc’)
A registry proxy that pushes metrics data to a RegistryAggregator.

connect()
Connects to the 0MQ socket and starts publishing.

class tapes.distributed.registry.RegistryAggregator(reporter,
socket_addr=’ipc://tapes_metrics.ipc’)

Aggregates multiple registry proxies and reports on the unified metrics.

start(fork=True)
Starts the registry aggregator.

Parameters fork – whether to fork a process; if False, blocks and stays in the existing pro-
cess

stop()
Terminates the forked process.

Only valid if started as a fork, because... well you wouldn’t get here otherwise. :return:

9

tapes Documentation, Release 0.3

10 Chapter 2. API docs

CHAPTER 3

Benchmarks

The benchmarking scripts are in the source code and have tox environments defined for Python 2.7, 3.4 and PyPy.
All you need to do to run them yourself is check out the code and run:

tox -e benchmark-py27,benchmark-py34,benchmark-pypy

The results shown here are from an old-ish i5 laptop and are by no means 100% conclusive. With that said...

3.1 Just the timer

This just runs some timer metric calls via Python’s timeit. Try it yourself by checking out the code and doing:

python -m benchmark.util.quick

The times (lower is better) are

Version Tapes Scales
Py 2.7 3.0038728714 12.1747989655
Py 3.4 3.3859353300 15.8657573729
PyPy 0.4108750820 11.163599968

11

tapes Documentation, Release 0.3

3.2 Flask

3.2.1 Python 2.7

3.2.2 Python 3.4

12 Chapter 3. Benchmarks

tapes Documentation, Release 0.3

3.2.3 PyPy 2.4

3.3 Tornado, single process

3.3.1 Python 2.7

3.3. Tornado, single process 13

tapes Documentation, Release 0.3

3.3.2 Python 3.4

3.3.3 PyPy 2.4

14 Chapter 3. Benchmarks

tapes Documentation, Release 0.3

3.4 Tornado, forked processes

3.4.1 Python 2.7

3.4.2 Python 3.4

3.4. Tornado, forked processes 15

tapes Documentation, Release 0.3

3.4.3 PyPy 2.4

This is a native Python metrics library implementation. It currently supports Python 2.7, 3.4 and PyPy, but most other
versions should probably work.

Compared to other libraries, tapes

• doesn’t use a separate thread to decay the moving average’s weights

• doesn’t use “clever tricks” with stack frames, which means it also doesn’t break in weird ways (e.g., when
used within a method decorated with @staticmethod)

• has clean code, that passes flake8 validation

• is also performance-oriented

You can check the Benchmarks yourself!

16 Chapter 3. Benchmarks

https://github.com/Cue/scales

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

17

tapes Documentation, Release 0.3

18 Chapter 4. Indices and tables

Python Module Index

t
tapes.distributed.registry, 9
tapes.meta, 8
tapes.registry, 7
tapes.reporting, 9
tapes.reporting.http, 9
tapes.reporting.statsd, 9
tapes.reporting.stream, 9
tapes.reporting.tornado, 9
tapes.reporting.tornado.statsd, 9
tapes.reporting.tornado.stream, 9

19

tapes Documentation, Release 0.3

20 Python Module Index

Index

C
connect() (tapes.distributed.registry.DistributedRegistry

method), 9
counter() (tapes.registry.Registry method), 7

D
DistributedRegistry (class in tapes.distributed.registry), 9

G
gauge() (tapes.registry.Registry method), 7
get_stats() (tapes.registry.Registry method), 7

H
histogram() (tapes.registry.Registry method), 7
HTTPReporter (class in tapes.reporting.http), 9

M
meter() (tapes.registry.Registry method), 7
metered_meta() (in module tapes.meta), 8

R
Registry (class in tapes.registry), 7
RegistryAggregator (class in tapes.distributed.registry), 9
report() (tapes.reporting.ScheduledReporter method), 9

S
ScheduledReporter (class in tapes.reporting), 9
start() (tapes.distributed.registry.RegistryAggregator

method), 9
StatsdReporter (class in tapes.reporting.statsd), 9
stop() (tapes.distributed.registry.RegistryAggregator

method), 9

T
tapes.distributed.registry (module), 9
tapes.meta (module), 8
tapes.registry (module), 7
tapes.reporting (module), 9
tapes.reporting.http (module), 9

tapes.reporting.statsd (module), 9
tapes.reporting.stream (module), 9
tapes.reporting.tornado (module), 9
tapes.reporting.tornado.statsd (module), 9
tapes.reporting.tornado.stream (module), 9
ThreadedStreamReporter (class in

tapes.reporting.stream), 9
timer() (tapes.registry.Registry method), 8
TornadoScheduledReporter (class in

tapes.reporting.tornado), 9
TornadoStatsdReporter (class in

tapes.reporting.tornado.statsd), 9
TornadoStreamReporter (class in

tapes.reporting.tornado.stream), 9

21

	Quick start
	Dependencies
	Single process
	Utilities
	Reporting
	Multi process

	API docs
	Benchmarks
	Just the timer
	Flask
	Tornado, single process
	Tornado, forked processes

	Indices and tables
	Python Module Index

